Color texture classification by integrative Co-occurrence matrices
نویسنده
چکیده
Integrative Co-occurrence matrices are introduced as novel features for color texture classi"cation. The extended Co-occurrence notation allows the comparison between integrative and parallel color texture concepts. The information pro"t of the new matrices is shown quantitatively using the Kolmogorov distance and by extensive classi"cation experiments on two datasets. Applying them to the RGB and the LUV color space the combined color and intensity textures are studied and the existence of intensity independent pure color patterns is demonstrated. The results are compared with two baselines: gray-scale texture analysis and color histogram analysis. The novel features improve the classi"cation results up to 20% and 32% for the "rst and second baseline, respectively. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
TEXTURE CLASSIFICATION BASED ON OVERLAPPED TEXTON CO-OCCURRENCE MATRIX (OTCoM) FEATURES
Abstract: The pattern identification problems such as stone, rock categorization and wood recognition are used texture classification technique due to its valuable usage in it. Generally, texture analysis can be done one of the two ways i.e. statistical and structural approaches. More problems are occurred when working with statistical approaches in texture analysis for texture categorization. ...
متن کاملTexture Classification based on Fuzzy Based Texton Co- occurrence Matrix
The Applications of Pattern recognition like wood classification, stone and rock classification problems, the major usage techniques ate different texture classification techniques. Generally most of the problems used statistical approach for texture analysis and texture classification. Gray Level Co-occurrence Matrices (GLCM) approach is particularly applied in texture analysis and texture cla...
متن کاملColor Texture Classification under Different Illuminations Using Rank Correlation Matrices
Color has been shown to be useful in the context of texture classification. However, since under different illuminations color is not stable, color invariant descriptors should be defined when the illumination of the query is unknown. In this paper, we propose to characterize color textures by analyzing the rank correlation of color planes between pixels locally close to each other. Thus, consi...
متن کاملBark Classification Using RBPNN Based on Both Color and Texture Feature
In this paper, a new scheme that merges color and texture information for bark image recognition is proposed. The feature vectors concerning color and texture are extracted using the multiresolution wavelet. In addition, the application of these features for bark classification using radial basis probabilistic network (RBPNN) and support vector machine (SVM) has been introduced. Finally, experi...
متن کاملAn Adaptive Color Texture Segmentation Using Similarity Measure of Symbolic Object Approach
Texture segmentation is the process of partitioning an image into regions with different textures containing similar group of pixels. Texture is an important spatial feature, useful for identifying object or region of interest. In texture analysis the foremost task is to extract texture features, which efficiently embody the information about the textural characteristics of the image. This can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 37 شماره
صفحات -
تاریخ انتشار 2004